Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

نویسندگان

  • Linling He
  • Yushao Cheng
  • Leopold Kong
  • Parisa Azadnia
  • Erick Giang
  • Justin Kim
  • Malcolm R. Wood
  • Ian A. Wilson
  • Mansun Law
  • Jiang Zhu
چکیده

Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a "scaffolding meta-server" to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a "multivalent scaffolding" approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

متن کامل

In silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations

Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...

متن کامل

Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope.

Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody i...

متن کامل

Structure-Based Design of Hepatitis C Virus Vaccines that Elicit Neutralizing Antibody Responses to a Conserved Epitope

Structure-Based Design of Hepatitis C Virus Vaccines that Elicit Neutralizing Antibody Responses to a Conserved Epitope. Title Structure-Based Design of Hepatitis C Virus Vaccines that Elicit Neutralizing Antibody Responses to a Conserved Epitope. Publication Type Journal Article Year of Publication 2017 Authors Pierce, BG, Boucher, EN, Piepenbrink, KH, Ejemel, M, Rapp, CA, Thomas, WD, Sundberg...

متن کامل

Hepatitis C Virus and Vaccine Development

The prevalence of Hepatitis C virus (HCV) is approximately 3% around the world. This virus causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The effectiveness of interferon-α and ribavirin therapy is about 50% and is associated with significant toxicity and cost. Hence, generating new vaccines or drugs is an obligation. However, there is no vaccine available for clinical u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015